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Mechanistic Insights 
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Abstract: Electrophilic amination constitutes a unique strategy for the synthesis of C–N bonds. One often-overlooked example of this 
type of process involves the reaction of organometallic nucleophiles with electrophilic nitrogen sources to yield aryl and alkyl amine de-
rivatives. Such transformations are mechanistically intriguing and have the potential to drastically alter the logic by which nitrogen-
containing compounds are synthesized. 
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INTRODUCTION 
Methods for the synthesis of C–N bonds have received signifi-

cant attention owing to the myriad of natural and unnatural products 
containing the amino functional group [1]. Traditional methods for 
the synthesis of amines largely involve the attack of nucleophilic 
nitrogen sources on electrophilic species. These include classical 
SN2 and reductive amination methods in addition to transition 
metal-catalyzed Buchwald-Hartwig-type cross-couplings [2]. An 
alternative “umpolung” approach involving nucleophilic attack on 
an electrophilic nitrogen source has been known since 1938 [3], but 
until recently, remained largely unexplored. This strategy is the 
retrosynthetic complement to standard nucleophilic amination, and 
as a result, has the potential to greatly impact the evolution of 
chemical methods for the synthesis of nitrogen functionality. 
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The power of this approach has already been realized using 
amines and enolates as the nucleophilic component, however, elec-
trophilic amination of organometallics is a much more nascent field 
[4]. As this area of research has grown, intriguing mechanistic in-
sights have been revealed. Ultimately, these fundamental discover-
ies may lead to the development of practical methods for the reac-
tion of organometallic species with R1R2N+ synthons (Fig. 1), and 
thus, transform the way we envision constructing C–N bonds. 

Reagents for the electrophilic amination of organometallics can 
be divided into two classes: those that involve nucleophilic attack 
occurring formally at an sp2-hybridized nitrogen (Fig. 2a) and those 
that result in attack occurring at an sp3-hybridized center (Fig. 2b). 
This brief review will initially explore reactions of the former class 
of electrophiles before discussing the latter along with their poten-
tial advantages. 

ATTACK ON sp2-HYBRIDIZED ELECTROPHILES 
Aryl organomagnesium as well as aryl and alkyl organozinc 

reagents have been shown to add to diazene electrophiles of general 
structure 1 [5]. Additions to di-tert-butyl azodicarboxylate and ary-
lazo tosylates afford primary and secondary amines, respectively, 
after manipulation of the intermediate hydrazino compounds 
(Scheme 1). Interestingly, attack on the unsymmetrical arylazo 
tosylates occurs regioselectively at the nitrogen bearing the aryl 

*Address correspondence to this author at the Department of Chemistry, Stanford 
University, Stanford, CA 94305-5085, USA; Tel: 1-650-724-4558;  
E-mail: deolson@stanford.edu 

N
N

R2
R1

R1 R2

N
OR3

R1
N3

R1
N

R2

LG LG = Cl
         OTs
         OTMS
         OBz

a.

b.

1 2 3

4 5

R1
N

H

LG

Fig. (2). 

group, presumably due to the polarization of the unsymmetrical azo 
group. Functional groups such as aryl halides and triflates can be 
tolerated under these electrophilic amination conditions, thus high-
lighting the complementarity of these methods to Buchwald-
Hartwig-type cross-couplings [2]. While appealing, these methods 
require additional steps to convert the initially formed hydrazines to 
the corresponding 1º and 2º amines. However, the ability to perform 
the addition reaction as well as the subsequent N–N bond reduction 
[6] in a single reaction vessel would serve to facilitate the applica-
tion of this chemistry. 
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As with diazene-based electrophiles, organoazides will undergo 
addition of organometallics to form intermediates that can be 
cleaved to reveal the desired amine products [7]. Trost and Pearson 
have demonstrated that azidomethylphenyl sulfide (6) will react 
regioselectively with Grignard reagents to form triazene structures 
[8]. Such intermediates can be converted to the corresponding pro-
tected amines following acylation and N–N bond cleavage. More 
recently, Hoffmann and co-workers observed that reaction of 6 with 
an optically active Grignard reagent occurred with complete reten-
tion of configuration (Scheme 2b) [9]. 

Retention of stereochemical configuration in this transformation 
is noteworthy because electrophilic amination of Grignard reagents 
could proceed via either a polar mechanism or a single electron 
transfer (SET) process. A polar mechanism would be expected to 
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occur stereospecifically, while an SET process would likely result 
in significant, if not complete, stereo-erosion [10]. Interestingly, 
Hoffmann has made a similar observation using an electrophilic 
oxime reagent of type 3 (Scheme 3), again suggesting that a polar 
mechanism is operative. This result is particularly provocative be-
cause it suggests the possibility of an SN2 reaction occurring at an 
sp2-hybridized atom [11]. 

The energetic barrier associated with an SN2 displacement at an 
sp2-hybridized atom might be expected to be significant. As a re-
sult, undesired side reactions such as nucleophilic addition to the 
oxime, -deprotonation, and Beckmann rearrangement could be-
come competitive. Accordingly, Narasaka and co-workers devel-
oped 7, a nitrogen source that is not prone to such undesired side 
reactions (Scheme 4a) [12]. Similarly, Erdik and co-workers found 
acetone O-(2,4,6-trimethylphenylsulfonyl)oxime (8) to be suitable 
for the electrophilic amination of organozinc reagents. Reactions 
with 8, however, only took place in the presence of a catalytic 
amount of CuCN (Scheme 4b) [13]. While experiments using 
stereodefined Grignard reagents suggest that these nucleophiles 
undergo electrophilic amination through a polar process, the same 
experiments were not performed with zinc cyanocuprates. As a 
result, the possibility that zinc cyanocuprates react through an SET 
pathway cannot be discounted. 
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The examples highlighted above together with Hoffman’s ear-
lier observations (see Schemes 2 and 3) prompted a more system-

atic study of the mechanism by which substitution at sp2-hybridized 
nitrogens occurs [14]. Hammett analysis of reactions between 8 and 
either Grignard reagents or zinc cyanocuprates revealed that elec-
trophilic amination was accelerated when either type of organomet-
allic was substituted with electron-donating substituents. However, 
the magnitude of the -values for these processes differed signifi-
cantly ( 2.94 and 0.84 for Grignard reagents and zinc cyanocu-
prates, respectively). Erdik and Ömür have suggested that this result 
reflects a change in mechanism between the two types of reactions. 
Both classes of organometallics exhibit nucleophilic character, 
though Grignard reagents are significantly more reactive in this 
regard. Currently, it is believed that Grignard reagents react with O-

sulfonyl oximes through direct SN2 displacement, while reactions 
using zinc cyanocuprates operate by way of an oxidative addi-
tion/reductive elimination pathway [14]. 

Theoretical evidence for an intramolecular SN2 displacement at 
an sp2-hybridized nitrogen atom has been provided by Nakamura 
and co-workers [15]. Post-Hartree-Fock ab initio calculations 
(MP2(FC)/6-31G*) indicate that an SN2 mechanism for this process 
is energetically feasible with an activation barrier of only 8.8 kcal 
mol-1. In fact, related SN2 reactions at sp2-hybridized carbon centers 
have also been studied and are supported by theory [16]. Neverthe-
less, it would seem that more experimental evidence is needed to 
make definitive statements about the mechanism of Grignard sub-
stitution at the nitrogen atom of an O-sulfonyl oxime. Complete 
inversion at the nitrogen center of a stereo-defined unsymmetrically 
substituted ketoxime would lend credence to this mechanistic pro-
posal, but to the best of my knowledge, such an experiment has not 
been described. 

While evidence for the SN2 reaction of Grignard reagents with 8
is largely theoretical, the oxidative addition/reductive elimination 
pathway for lithium dialkylcuprates is supported experimentally. 
For instance, the reaction of lithium dibutylcuprate with 9 provided 
imine 10 in high yield upon aqueous workup (Scheme 5). This for-
mal reduction of the N–O bond could have proceeded through the 
protonation of a putative Cu(III) intermediate. Furthermore, if in-
stead O2 was bubbled through the reaction mixture, reductive 
elimination could be induced to give both the desired butyl imine 
and the homo-coupled hydrazone, thus lending additional support 
for the intermediacy of a Cu(III) species. 

Although several of the mechanistic details by which various 
organometallic species react with reagents such as 7, 8, and 9 re-
main ambiguous, it is clear that the nature of the nucleophile can 
greatly influence the reaction pathway. Regardless, these substi-
tuted oximes belong to a class of electrophiles (Fig. 2a) with many 
inherent disadvantages. First, such sp2-hybridized electrophilic 
aminating reagents require subsequent manipulations to unveil the 
desired amine products, and as a consequence, syntheses that utilize 
them suffer from poor atom and step economy. Second, their use is 
generally limited to the synthesis of primary amines. Fortunately, 
an alternative approach for preparing functionalized amines involv-
ing the use of electrophilic sp3-hybridized nitrogen sources (see Fig. 
2b) does not suffer from these problems. The details of such proc-
esses, with a specific focus on reaction mechanism, will be dis-
cussed in the next portion of this review. 
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ATTACK ON sp3-HYBRIDIZED ELECTROPHILES 
The reaction of organometallic reagents with electrophilic sp3-

hybridized nitrogen sources has been shown to yield protected pri-
mary amines in addition to the more challenging to access secon-
dary and tertiary amines (Scheme 6) [17]. These electrophiles can 
possess various leaving groups including chlorides, alkoxides, sul-
fonates, and benzoates. Furthermore, this class of electrophilic ami-
nating reagents can be subdivided based on the mechanism by 
which they undergo substitution. This distinction is highly depend-
ent on whether or not the electrophile contains at least one ionizable 
proton at nitrogen. 
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The mechanistic details by which reagents with the general 
structures R1HN–LG (4) and R1R2N–LG (5) react with organomet-
allics have been the subject of numerous reports (vide infra). One of 
the more interesting mechanistic subtleties involves the reaction of 
alkyl lithiums with O-substituted hydroxylamines bearing at least 
one proton on nitrogen (4). Electrophilic aminations of this type 
require two equivalents of organolithium reagent, presumably due 
to initial deprotonation of the hydroxylamine. The resulting lithium 
alkoxyamide can then either undergo -elimination to form a 
highly reactive nitrene that is intercepted by a second equivalent of 
organometallic reagent (Scheme 7, path a), or it can undergo direct 
substitution (Scheme 7, path b). The latter mechanistic proposal is 
particularly intriguing, and somewhat counterintuitive, because it 
involves carbanion attack at a center that is formally anionic. 
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Beak and co-workers have published several studies on the 
mechanism of RHN–LG substitution with organometallic reagents, 
and they have concluded that free nitrenes are not intermediates on 
the reaction coordinate [18]. Several pieces of evidence support this 
conclusion. First, byproducts characteristic of reactions involving 
nitrenes were not observed. These include aziridines when O-allyl 
hydroxylamine is used as a starting material, or products resulting 
from a 1,2-hydrogen migration in reactions with N-
methylmethoxyamine (Scheme 8) [19]. Second, endocyclic restric-
tion tests along with deuterium labeling studies suggest that the 
nucleophile and leaving group prefer to be disposed 180º from each 
other in the transition state. 
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Theoretical calculations have provided several explanations as 
to why substitution by a formal anion at a negatively charged sp3-
hybridized nitrogen would proceed as the favored pathway [20]. 
First, calculations suggest that the N–O bond of the lithium 
alkoxyamide (LiNHOR) is significantly more polarized than that of 
the neutral hydroxylamine (NH2OR). Theory also suggests that a 
lithium-bridged structure is responsible for the lengthening of the 
N–O bond (Fig. 3b) [21]. In addition, the aggregation state of the 
reactants is likely to play a large role in facilitating this reaction. 
Examples of such complex-induced proximity effects (CIPE) are 
well known [22]. Furthermore, these effects can often be disrupted 
by the addition of hexamethylphosphoramide (HMPA) as a cosol-
vent due to its strong propensity to coordinate lithium. An experi-
ment where an electrophilic amination is performed in the presence 
of HMPA would be quite informative and shed some light on the 
importance of these putative aggregates. 
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Whereas O-alkyl hydroxylamines seem to require activation 
toward nucleophilic attack by initial deprotonation and subsequent 
bridging of the N–O bond, N,N-dialkyl hydroxylamines possessing 
good leaving groups (such as sulfonate or benzoate) require no such 
activation. These latter reagents have become popular electrophiles 
used in the synthesis of tertiary amines [17d,h-j]. 

Initial kinetic studies on the reaction of O-(mesitylsulfonyl)-
N,N-dimethylhydroxylamine with Grignard reagents has revealed a 
first order dependency on Grignard reagent [23]. In addition, the 
negative  and S‡ values obtained from Hammett and Eyring 
analyses, respectively, are consistent with a direct SN2 pathway. 

In contrast, the Cu-catalyzed amination of alkyl zinc reagents 
with O-(benzoyl)-N,N-dialkylhydroxylamines, recently reported by 
Johnson and co-workers [17j] (Scheme 9a), is likely to proceed by 
a mechanism involving initial oxidative addition to the N–O bond 
followed by reductive elimination to form product [24]. The first 
step, oxidative addition between the organocopper species and the 
O-(benzoyl)-N,N-dialkylhydroxylamine, can potentially occur 
through several distinct mechanisms, such as direct SN2 displace-
ment by the Cu complex, -complexation followed by concerted 
insertion into the N–O bond, or SET-mediated oxidative addition 
(Scheme 9b).
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The first piece of evidence in support of oxidative addition oc-
curring through an SN2 mechanism was the fact that only 9% race-
mization was observed when Hoffmann’s stereodefined organomet-
allic reagent was employed (Scheme 10) [24a]. Johnson and Camp-
bell claim that significantly greater racemization would be expected 
if radical species were involved, and this contention is supported by 

the work of Hoffmann and co-workers [10]. Furthermore, the de-
gree of stereoerosion was comparable to a related reaction involv-
ing the conjugate addition of a cuprate to an enone [25]. Both the 
electrophilic amination and the conjugate addition required Mg to 
Zn and Zn to Cu transmetallation steps, suggesting that these ma-
nipulations could be the common source of stereoerosion. However, 
it should be noted that 9% stereoerosion is still significantly greater 
than what is observed for related reactions using Grignard reagents 
(Schemes 2 and 3). Therefore, it cannot be discounted that polar 
and SET mechanisms are operating concurrently, thus giving rise to 
less than ideal retention of configuration. 
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The fact that the Cu-catalyzed amination of alkyl zinc reagents 
with O-(benzoyl)-N,N-dialkylhydroxylamines proceeds with sig-
nificant retention of configuration suggests that radicals are most 
likely not involved in the oxidative addition step. However, it does 
not distinguish between potential SN2 and concerted mechanisms. 
Fortunately, these oxidative addition pathways can be differentiated 
based on their varying stereoelectronic requirements. For example, 
an intramolecular SN2 reaction would have to proceed through a 6-
endo-tet transition state (Fig. 4a), which is disfavored according to 
Baldwin’s rules. However, formation of a -complex (Fig. 4b)
followed by oxametalacyclopentane formation would be geometri-
cally and stereoelectronically feasible according to Johnson and 
Campbell [24]. Therefore, an endocyclic restriction test was per-
formed to determine which of these two scenarios was operative 
(Scheme 11).

Cu
NBn2

O

O

Cu

O

O

NBn2

a. b.

Fig. (4).

When the reaction was performed with differentially labeled 
starting materials (11 and 12), the crossover products (14 and 15)
were obtained in a near statistical ratio along with the non-
crossover products (13 and 16). This result strongly suggests that 
the reaction occurs intermolecularly presumably through an SN2-
like transition state [26]. These mechanistic insights could prove 
useful in the refinement of related electrophilic amination method-
ologies. 

CONCLUSIONS 
Detailed studies concerning the electrophilic amination of or-

ganometallic reagents have revealed many unexpected mechanistic 
curiosities such as direct SN2 displacement at sp2-hybridized centers 
and proximity-induced reaction of two negatively charged species. 
Only an understanding of such fundamental processes will enable 
these methods to move toward becoming practical approaches for 
the synthesis of amine-containing molecules. Although still in its 
infancy, the unique retrosynthetic disconnects that it affords cou-
pled with its operational simplicity make the electrophilic amina-
tion of organometallic reagents a strategy with clear potential to 
greatly impact chemical synthesis. 
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